Full Stack Deep Learning
  • Full Stack Deep Learning
  • Course Content
    • Setting up Machine Learning Projects
      • Overview
      • Lifecycle
      • Prioritizing
      • Archetypes
      • Metrics
      • Baselines
    • Infrastructure and Tooling
      • Overview
      • Software Engineering
      • Computing and GPUs
      • Resource Management
      • Frameworks and Distributed Training
      • Experiment Management
      • Hyperparameter Tuning
      • All-in-one Solutions
    • Data Management
      • Overview
      • Sources
      • Labeling
      • Storage
      • Versioning
      • Processing
    • Machine Learning Teams
      • Overview
      • Roles
      • Team Structure
      • Managing Projects
      • Hiring
    • Training and Debugging
      • Overview
      • Start Simple
      • Debug
      • Evaluate
      • Improve
      • Tune
      • Conclusion
    • Testing and Deployment
      • Project Structure
      • ML Test Score
      • CI / Testing
      • Docker
      • Web Deployment
      • Monitoring
      • Hardware/Mobile
    • Research Areas
    • Labs
    • Where to go next
  • Guest Lectures
    • Xavier Amatriain (Curai)
    • Chip Huyen (Snorkel)
    • Lukas Biewald (Weights & Biases)
    • Jeremy Howard (Fast.ai)
    • Richard Socher (Salesforce)
    • Raquel Urtasun (Uber ATG)
    • Yangqing Jia (Alibaba)
    • Andrej Karpathy (Tesla)
    • Jai Ranganathan (KeepTruckin)
    • Franziska Bell (Toyota Research)
  • Corporate Training and Certification
    • Corporate Training
    • Certification
Powered by GitBook
On this page

Was this helpful?

  1. Course Content
  2. Machine Learning Teams

Hiring

How to source Machine Learning talent? How to interview Machine Learning candidates? How to find a job as a Machine Learning practitioner?

PreviousManaging ProjectsNextTraining and Debugging

Last updated 5 years ago

Was this helpful?

Summary

  • Machine Learning talent is scarce.

  • As a manager, be specific about what skills are must-have in the Machine Learning job descriptions.

  • As a job seeker, it can be brutally challenging to break in as an outsider, so use projects as a signal to build awareness.

Hiring - ML Teams